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LETTER TO THE EDITOR 

New conserved quantities derived from symmetry for 
stochastic dynamical systems 

Tetsuya Misawa 
Department of Mathematics. College of General Education Nagoya City University, 
Mizuho-!a. Nagoya 467, Japan 

Received 3 August 1994 

Abstract Recently. the author has proposed an elementary theow of conserved quantities 
and symmetry for sloehastic dynamical systems described by stochastic differential equations 
of Stratonovich type Within the framework, a new method for deriving conserved quantities 
from symmetry is developed in a similar " n e r  to that of Hojman's work which gives a new 
conservation law constructed without using either Lagranpiuls or Hamiltonians for deterministic 
dynamical system. Some examples of the conserved quantities obtained through the new method 
a l t  given. 

The theory of conserved quantities (the first integrals) and symmetry (invariant under a 
transformation) for dynamical systems must be one of the most important subjects in physics. 
Hence, it is natural to formulate these notions for stochastic dynamical systems described 
by stochastic differential equations. Indeed, there has been increasing interest in stochastic 
models for nonlinear integrable systems which have essentially some conserved quantities 
(e.g. Lotka-Volterra system) (Itoh 1993, Nakamura 1994). In consideration of these facts, 
the author has recently proposed an elementary theory of conserved quantities and symmetry 
for the stochastic dynamical systems (Misawa 1994). 

On the other hand, in the theory of deterministic dynamical systems, it is widely known 
that most of the conservation laws are derived from the Lagrangian or the Hamiltonian 
structures of the equation describing the system. Hence, if dynamical systems do not have 
such structures, it may be difficult to find out conserved quantities for the systems. However, 
Hojman has proposed a new method for deriving a conserved quantity from the infiniesimal 
symmetry transformation of the dynamical equation only (Hojman 1992, Mimura and Nono 
1994). The main theorem he verified is outlined as follows: Let us consider the dynamical 
system of n second-order differential equations 

q' - F ' ( f j , q , t )  = o  (i = 1,2,. . . n )  

with the condition Etl aF'/aq' = 0, where q = (qi(t));=l, q = (dq'/dt);=, and 
q = ($)n ,=, = (d2q'/dt2):=1. Suppose that this system is invariant under the infinitesimal 
symmetry equation of the transformation = q' t uf ' (4 ,  q, I )  (i = 1,2,. . . n) up to U' 
terms, where a is an infinitesimal parameter. Then, the function f = (f'& yields the 
following conserved quantity for the system: 

i=l 
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where D / D t  is the following operator: 

Thus, a conserved quantity is obtained through symmetry for the dynamical system. Here 
we remark that the quantity given in the left-hand side of the condition for 'an external 
force' F = (F');=, and the conserved quantity mentioned above arc a sort of 'divergence'. 

In the stochastic systems we investigate, the Lagrangian or the Hamiltonian structures 
often fail to exist. Therefore, it must be important and relevant to formulate a similar 
theorem to that of Hojman for our stochastic dynamical systems; and this is the main 
purpose of the present article. 

In what follows, we consider stochastic dynamical systems described by the following 
n-dimensional vector valued stochastic differential equations of Stratonovich type (Ikeda 
and Watanabe 1985): 

m 

dx, = b(x,, t)dt  + cgr(xt ,  t )  o dw: xt0 = C, t E [to, TI (1) 

where w, = (w;)y=, is an m-dimensional standard Wiener process, c is a constant n-vector, 
and b = (b'):=, and g,  = (gf)y=l are n-dimensional smooth functions, respectively (for 
convenience, differentiability of any function in our article is assumed to be of sufficiently 
high order). Now, to make this article self-contained, we repeat here the basic notions and 
results for conserved quantities and symmetry for the system (1) (Misawa 1994). Let I be a 
smooth function on R" x R', and a,, X O  and X ,  (r = 1,2,. . . m )  are differential operators 
defined by 

,=I 

Then, we call the function I a conserved quanti@ for a stochastic dynamical system (1) if 
it satisfies 

(af + x , ) I ( x ,  I )  = o x, ux, t )  = o ( r = l , Z ,  ... m ) .  (3) 

Indeed, using the change of variables formula for stochastic differential equations of 
Stratonovich type (Ikeda and Watanabe 1985) and (3). we obtain the following equation 

m 
dI(xf.  t )  = (3, + Xo)I(xt, t)df + z X , l ( x , , t )  o duo: = 0 (4) 

,=I 

where xl is a diffusion process governed by (1). This indicates that ' I ( x , , t )  = constant' 
holds on the diffusion process xi; hence. we may regard I satisfying (3) as a conserved 
quantity for (1). 

In a similar fashion, we define symmetry for stochastic dynamical systems (1). Let 
y = $ ( x ,  t )  be a transformation from R" x R' to R". We call $ a symmetry transformation 
for a stochastic dynamical system (1) if the function satisfies 

b($(x,O,f) = (a,+Xo)$(x,t) g r U ( x , t ) , t )  =X,$(x,t)  ( r =  1,2. ... m).  (5) 
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Because, by the change of variables formula and (5), we have the following stochastic 
differential equation describing the process ut = @(xt, t )  

... 
dyx = (at + Xo)@(xt, t)df + X , @ ( x t ,  t )  0 dw; 

r=1 
m 

= b(yt, t )  dt + g,(Yt, f) 0 dw; (6) 
,=I 

where xt is a diffusion process governed by (1). This means that a stochastic dynamical 
system described by (1) is invariant under the transformation satisfying (5); hence, such 
a transformation may be called 'symmetry'. On the basis of this definition, we can 
further formulate the notion of symmetry operators. Consider the differential operator 
Y = f ' ( x ,  t)a/ax', where f = (f'):=, is an R"-valued smooth function. Moreover, 
let y = @ ( x ,  I; a)  be a local one-parameter transformation generated by Y (Eisenhart 1961), 
where a is a parameter on T = (-ao,ao) and @ ( x , f ; O )  = x .  Here we assume that 
@ ( x ,  t ;  a ) ,  b(@(x,  t ;  a ) .  t )  and g,(@(x, t ;  a), t )  (r = 1 , 2 , .  . . m )  are analytic with respect 
to the parameter a on T .  Then, using the definition of one-parameter transformation and 
the expansions of 4, b(@, t )  and gr(@, t )  with respect to a, we can verify the following 
theorem: 

Theorem 0. The one-parameter transformation generated by a differential operator Y is a 
symmetry transformation of a stochastic dynamical system (1) if, and only if, the operator 
Y satisfies 

(7) 
where I., .] denotes Lie bracket and a, stands for the operator a /a t .  

On account of this theorem, we call Y satisfying (7)  a symmetry operaror for (1). 
In particular, if the one-parameter transformation @(x, t ;  a)  is given as an infinitesimal 
transformation @ ( x ,  f ;  a)  = x + a f ( x ,  t )  (a the infinitesimal parameter). theorem 0 reduces 
to the following: 

Theorem 0'. A stochastic dynamical system (1 )  is invariant up to a-terms under the 
infinitesimal transformation derived from a differential operator Y if, and only if, Y is 
a symmetry operator for (1). 

Thereby, such an infinitesimal transformation is called 'infinitesimal symmetry'. In the 
author's paper (Misawa 1994), several examples with respect to conserved quantities and 
symmetry for stochastic nonlinear systems involving Lotka-Volterra systems are given. 

Now, we are to formulate a similar theorem to that of Hojman within the framework of 
our stochastic systems mentioned above. In consideration of the remark in the introductory 
part of the present article, we may expect that such a theorem is given as follows: 

Theorem 1 .  
1,2,  .. . m )  satisfy 

[a, + xo, Y ]  = o [x,, Y ]  = o (r = i , 2 , .  . . m) 

For given stochastic dynamical system (l) ,  assume that b and g, (r  = 

div b = 0 divg, = 0 (r = 1,2,  . . . m ) .  (8) 
Then, the function f = (f'):=, in a symmetry operator Y = f ' ( x ,  r )a /ad  for the 
system (1) (i.e. the function f satisfying (7)) yields the following conserved quantity for 
(1): 

I = d i v f .  

In fact, more generally, we can prove the following theorem: 
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Theorem 1’. For given stochastic dynamical system (l), assume that there exists a function 
‘p = ‘p (x .  t )  satisfying 

divg, + X r p  = O  ( r  = 1,2 ,  .. .m) (10) 

where Xo and X, are the operators given by (2). Then, the function f = (f’)y=, in a 
symmetry operator Y = Cy=l f ’ ( x ,  t)a/axi for ( I )  yields the following conserved quantity 
for the system: 

d i v b +  (a, + X0)q = 0 

Z = d i v f + Y l p .  (11) 

Theorem 1 is just a particular case of theorem 1’. Indeed, if we set ‘p as 0, (IO) reduces to 
(8). Then, of course, (1 1) just coincides with (9). Hence, we will only prove theorem 1‘. 

Proof of Theorem 1’. To show theorem 1’ we have to examine that function Z given by 
(1  1) satisfies (3); this is a matter of calculation. First, inserting ( I  1) into the left-hand side 
of each equation in (3). we have 

(12Q) 

(12b) 

Using (7) and (IO), we can rewrite the second terms of the right-hand sides of (12a) and 
(126) as 

(a, + xo)l = (a, + Xo)(div f )  + (a, + x0)y’p 

X,Z = X,(div f) + X,Ylp ( r  = I ,  2, . . . m). 

(a, + x , ) Y ~  = ~ ( a ,  + xO)lp = -Y(divb) (134 

X,Yrp = YX,’p = -Y(divg,) (136) 

respectively. On the other hand, by simple computation, we see that the first terms of them 
are expressed as 

n 

X,(divf) = x X , a i f ’  
i= l  
n n 

= C a i ( x , f i )  - E aigyajfi 
i= l  i , j d  

respectively, where ai = a/ax‘ (i = 1,2 ,  ... n). Here, we remark that the following 
equations are derived from (7): 
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The substitutions of these equations into (14u) and (14b) yield 

n 
= fjajai6' = Y(divb) 

i,j=l 

= fjajaig; = Y(divg,). (15b) 
i,j=l 

The equations (13a), (13b) and (15a), (156) imply that ( 1 2 )  and (126) turn out to be 

(a, + X0)l = 0 and X,I = 0 (r = 1,2,. . . m )  

respectively, and thereby completing the proof of theorem 1'. 

by applying theorem 1 or theorem 1' to the stochastic dynamical systems (1). 

Exumple 1. 

At the end of our article, we will give two examples of conserved quantities obtainable 

Consider the following 3-dimensional stochastic linear dynamical system: 

Then, this system satisfies the condition (8) in theorem 1; indeed, we can easily check 
that div b = 0 and divgl = 0 hold. We further find out that Y = f ' ( x ,  t)ai = 
( ( x ' ) ' + ( x ~ ) ~ +  ( x ~ ) ~ ) ( ~ I  + az+&) becomes a symmetry operator for this system, since the 
operator satisfies (7) for (16) (note that ai stands for a/ax'). Hence, we can apply theorem 1 
to this system; it proves that the following scalar function is a conserved quantity for the 
system: 

3 3 
I = a$ = a,((x1)2 + (x*)' + (x3)'] 

i=l i=l 

= 2(x' +X'+ x3) .  

We remark that this result is directly examined through (3) and (17). 

Exumple 2 .  
system: 

Next we work with the following 4-dimensional stochastic nonlinear dynamical 
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Then, we can choose the function p(x, f )  satisfying (10) in theorem 1' as 

Moreover, it is easily verified that Y = E:=, f'(x, t)ai = (XI . x4/x2)a4 is a symmetry 
operator for this stochastic system (18). Hence, we may apply theorem 1' to the system, 
and thereby, we get the following conserved quantity. 

X I  .x, a, -5 logxl + 2)  = a . , ( - ) + ( T )  ( X I  

Note that this result is also directly confirmed through (3) and (19). 
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